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Executive (dys)function after traumatic brain injury: special
considerations for behavioral pharmacology
Jenny E. Ozgaa, Jessica M. Povroznikb, Elizabeth B. Engler-Chiurazzib

and Cole Vonder Haara

Executive function is an umbrella term that includes
cognitive processes such as decision-making, impulse
control, attention, behavioral flexibility, and working
memory. Each of these processes depends largely upon
monoaminergic (dopaminergic, serotonergic, and
noradrenergic) neurotransmission in the frontal cortex,
striatum, and hippocampus, among other brain areas.
Traumatic brain injury (TBI) induces disruptions in
monoaminergic signaling along several steps in the
neurotransmission process – synthesis, distribution, and
breakdown – and in turn, produces long-lasting deficits in
several executive function domains. Understanding how TBI
alters monoamingeric neurotransmission and executive
function will advance basic knowledge of the underlying
principles that govern executive function and potentially
further treatment of cognitive deficits following such injury.
In this review, we examine the influence of TBI on the
following measures of executive function – impulsivity,
behavioral flexibility, and working memory. We also describe

monoaminergic-systems changes following TBI. Given that
TBI patients experience alterations in monoaminergic
signaling following injury, they may represent a unique
population with regard to pharmacotherapy. We conclude
this review by discussing some considerations for
pharmacotherapy in the field of TBI. Behavioural
Pharmacology 29:617–637 Copyright © 2018 The Author(s).
Published by Wolters Kluwer Health, Inc.
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Introduction
Traumatic brain injury (TBI) occurs when an external force

(e.g. mechanical deformation, rapid deceleration, blast

wave) is applied to the brain and affects more than 200 per

100 000 people each year globally (Bryan-Hancock and

Harrison, 2010). While many people recover with minimal

complications, a significant portion goes on to develop

chronic behavioral and cognitive deficits, resulting in an

estimated 1–2% of people with TBI-related disabilities

(Thurman et al., 1999; Zgaljardic et al., 2015), and accounting

for a staggering $76.5 billion USD economic burden as of

2010, with 10-year costs averaging $270 000 per patient

(Corso et al., 2006; Coronado et al., 2012; Ponsford et al.,
2013). Brain injury is considered to be a major risk factor in

the development of neurodegenerative disorders, including

Parkinson’s and Alzheimer’s diseases (Semchuk et al., 1993;
Plassman et al., 2000), and is associated with increased rates

of depression, anxiety, attention-deficit disorders, suicidality,

and substance abuse following such central nervous system

damage (Moor et al., 2006; Vaishnavi et al., 2009; Rao et al.,
2010; Konrad et al., 2011; Reeves and Panguluri, 2011;

Zgaljardic et al., 2015). Notably, these disorders impair a

wide variety of behaviors commonly considered under the

umbrella of ‘executive function,’ including memory, beha-

vioral flexibility, impulsivity, and decision-making (Alves

et al., 2014; Bredemeier and Miller, 2015; Day et al., 2015;
Sharp et al., 2015; Kingdon et al., 2016).

Given the considerable difficulty of determining the causes

of executive function deficits in clinical TBI patients,

several injury models have been developed for inducing

experimental TBIs in nonhuman animals, that map on to

clinical injuries and severities (Morganti-Kossmann et al.,
2010). These injury types may be induced using various

methods (e.g. controlled-cortical impact, fluid percussion,

weight drop, blast) and at a spectrum of severities, each

with unique pathological characteristics. Focal injuries result

largely in localized contusion and cell death while being

highly reproducible in the animal laboratory. In contrast,

concussive and blast injuries generate a diffuse pattern of

injury with axonal shearing that are less reproducible than

focal injuries. In animal models, severity of injury is directly

related to the amount of force applied to the animal’s brain

and strongly tied to neurological outcome (Xiong et al., 2013),
while clinical measurements rely on neurological outcomes

such as the Glasgow Coma Scale to assess severity (Teasdale

and Jennett, 1974). Regardless of primary injury type, cas-

cades of secondary damage are initiated, which may include
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neurochemical and ionic disequilibrium in neurons, deple-

tion of cellular energy reserves, mitochondrial dysfunction,

lipid peroxidation and DNA damage, upregulated neuroin-

flammation, and compromised glial and endothelial support

networks, that coalesce to contribute to enduring dysfunction

after TBI (Prins et al., 2013).

While various animal models have been used for several

decades to study the pathology of brain injury, only

recently has more attention been given to behavioral

assessment of higher-order function. For many decades,

the primary assessment of cognitive function after such

trauma has been the Morris water maze (MWM), a task

designed to measure hippocampal function (Morris,

1984). While this has proven to be very effective in

rapidly assessing the effects of TBI on spatial learning

and reference memory in animals, it is difficult to ascer-

tain changes associated with a variety of other executive

functions using this task. More recent studies have begun

to make use of a wider variety of paradigms to measure

cognition, including several methods based on standard

operant techniques, which are the focus of this review.

To date, no pharmacological agents have been approved

for the treatment of TBI, either in the acute or the chronic

period. In particular, it is unclear whether patients with

injury-induced psychiatric conditions represent a special

population with regard to pharmacotherapies, and the

degree to which commonly prescribed drugs are appro-

priate for patients with a TBI. Thus, the purpose of the

present review is to (i) survey the literature on executive

function assessments following human and animal brain

injury; (ii) describe monoaminergic-systems changes fol-

lowing TBI that may influence how deficits in executive

function respond to pharmacological intervention; and (iii)

discuss considerations for behavioral pharmacology and

pharmacotherapies in TBI.

Executive function following traumatic brain
injury
Impulsivity
Impulsivity is a multifaceted concept describing actions

with the potential to provide short-term gain at a cost to

long-term benefits. The construct can be subdivided into

motor impulsivity (i.e. failure to inhibit responding), choice

impulsivity (i.e. inability to wait for delayed reinforcers or

issues with delayed gratification), and sometimes risk-

taking (i.e. choosing larger outcomes that are uncertain

over smaller outcomes that are certain). Human studies

suggest that deficits involving impulsivity following TBI

are particularly problematic because of their wide impact

on daily function (Rochat et al., 2010; James et al., 2014) and
animal models with high translational validity have been

developed within each realm of impulsive behavior.

Motor impulsivity
Motor impulsivity, also known as response disinhibition,

refers broadly to acting without thinking. Response

inhibition can be further divided into ‘stopping’ and

‘waiting’ impulsivity (Schachar et al., 2007; Robinson

et al., 2009), in which ‘stopping’ impulsivity refers to the

inability to stop an action that has already been initiated,

while ‘waiting’ impulsivity refers to the inability to

inhibit responding for an extended duration (i.e. pre-

mature responding). One of the clinical manifestations of

increased motor impulsivity is impulsive aggression,

which is also correlated with criminal behavior after TBI

(Alderman, 2003; Dyer et al., 2006; Wood and Thomas,

2013). Impulsive aggression is operationalized as a quick,

impulsive, aggressive response following minimal pro-

vocation (Barratt et al., 1997), and in its verbal form is

relatively common during acute recovery post-TBI

(35–38%; according to Dyer et al., 2006), although phy-

sical aggression may also be present (Dyer et al., 2006;
Rao et al., 2009). Thus, deficits in motor impulsivity post-

TBI have the potential to drastically impact quality of life

for individuals with TBI, and their close relations.

Clinical evidence: There are several procedures for asses-

sing motor impulsivity in humans, including go/no-go

tasks (Donders, 1969), stop-signal tasks (SST; Logan,

1994), and continuous performance tasks (CPT; Rosvold

et al., 1956). For humans, reinforcers are presented typi-

cally in the form of ‘points’ such as those delivered in

a game.

During go/no-go tasks, response inhibition is evaluated

by pairing a cue (e.g. tone, symbol) with each type of trial

– ‘go’ and ‘no-go’ trials – to aid in discrimination between

the two alternatives. In general, if responding is inhibited

during the ‘no-go’ signal, a reinforcer is delivered, while

responses are punished with a timeout. The opposite

occurs during ‘go’ signals, with reinforcement of

responses and punishment of nonresponding. The SST is

a more complex version of go/no-go, where response

inhibition is tested further as participants must inhibit an

action that is already in progress. A rapid response

sequence is trained on two different options to receive a

reinforcer. At random intervals within the session, a sti-

mulus is presented (typically a tone), which signals that

response inhibition will be reinforced. Stopping difficulty

is increased by parametrically manipulating the delay to

presentation of the ‘stop’ trial signal, and the signal is not

given until a motor action is already in progress.

Specifically, the task is designed to measure the longest

delay under which an already-initiated action can be

inhibited. Those with poorer inhibitory control will

require shorter delays and have increased stop-signal

reaction times (Logan, 1994). Nativ et al. (1994) and

Rochat et al. (2013) used the SST to assess stopping

impulsivity of patients following moderate-to-severe

TBIs as compared with healthy controls matched for

handedness or age. Stimuli were different colored lights

and participants were instructed to respond as quickly as

possible in the presence of one color and to stop

responding in the presence of the alternative color.
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During this procedure, TBI patients had significantly

longer latencies to inhibit responding relative to controls,

which is indicative of poorer response inhibition and

resistance to performance interference following injury.

CPTs are a popular tool for assessing sustained attention

and waiting impulsivity in various clinical populations

(Riccio et al., 2002). Such tasks require subjects to

respond when target stimuli are present (i.e. a specific

tone or light) and to inhibit responding when alternative,

distractor stimuli are present (Rosvold et al., 1956).

Duncan et al. (2005) and Chen et al. (2012) used visual

versions of the CPT to assess sustained attention and

motor impulsivity at 2 years and 1 month postmild con-

cussive TBI, respectively, as compared with age-

matched, sex-matched, and education-matched controls.

Together, results from these studies indicate that TBI

patients have omission errors, comission errors, and

reaction times that are comparable to non-TBI partici-

pants, and that regardless of whether tested during acute

or chronic recovery, mild concussive TBI does not affect

performance on visual CPTs.

Preclinical evidence: Given the significance of motor

impulsivity problems in the clinical population, analogs

of the tasks described above have been designed to

assess motor impulsivity in preclinical animal models.

Many of the tasks map onto the human assessments quite

directly; however, reinforcers are typically delivered in

the form of food.

Similar to the clinical evidence discussed above, pre-

clinical evidence using rats and mice suggests that mild

concussive experimental TBI produces deficits in stop-

ping impulsivity in the go/no-go task, indicated by

increased latencies to inhibit responding when no-go

stimuli are presented (Hehar et al., 2015; Mychasiuk et al.,
2015). In addition to a significant main effect of TBI on

response inhibition, both of these studies also found that

deficits for male rats were significantly more pronounced

than those for female rats, suggesting that sex may play a

prominent role in how TBI affects response inhibition.

A similar deficit in latency to stop responding has been

shown when utilizing the SST in rats. In particular, fol-

lowing severe focal TBI to the bilateral medial frontal

cortex, response inhibition was impaired in rats when

assessed using a SST, indicated by increased stop-signal

reaction times and these deficits were exacerbated in rats

that underwent voluntary exercise during acute recovery

(Crane et al., 2012).

In contrast to the stop-signal and go/no-go tasks, differ-

ential reinforcement of low-rate responding (DRL)

schedules of reinforcement (Ferster and Skinner, 1957)

are free-operant arrangements and do not have desig-

nated ‘stop’ trials. Such reinforcement schedules are

designed to evaluate waiting impulsivity and include a

temporal duration in which lack of responding is rein-

forced. Specifically, if the time between two consecutive

responses is greater than some duration (set by the

experimenter), reinforcement occurs. If responding

occurs before the duration elapses, the timer is reset. For

example, on a DRL 20 s schedule, subjects must space

two consecutive responses by at least 20 s to receive

reinforcement. Severe focal injuries to the bilateral

frontal cortex in rats impaired performance on a DRL 20 s

schedule and deficits persisted until 11 months post-

injury (Lindner et al., 1998), with TBI animals showing

an ~ 15% reduction in efficiency.

Another behavioral task developed for studying motor

impulsivity of nonhuman animals is the five-choice serial

reaction time task (5CSRTT), which is considered an

analog of human CPTs (Carli et al., 1983). During this

procedure, subjects must wait a period of time until the

brief illumination of one response option (commonly 0.5 s

duration), after which a response to that alternative is

reinforced. Because of the brief presentation of the sti-

mulus, combined with punishment for incorrect or

omitted responses, the task sets up a prepotent motor

response, which is required to be inhibited for some

duration (commonly 5 s, although longer and variable

versions exist). Following reinforcer delivery, the next

trial may be initiated immediately. Failure to inhibit

leads to a timeout. Because each session is limited in

duration, excessive premature responding leads to delays

in reinforcement or even reduced total reinforcement. In

one study utilizing the 5CSRTT in rats, mild, moderate,

and severe focal TBI to the bilateral frontal cortex

resulted in a significant increase in premature respond-

ing, and deficits persisted for 14 weeks postinjury

(Vonder Haar et al., 2016).

Summary: While there are relatively few clinical and

preclinical studies on response inhibition following TBIs,

the existing evidence suggests that motor impulsivity

(both, stopping and waiting impulsivity) increases fol-

lowing even mild injuries. The use of a variety of pro-

cedures for assessing motor impulsivity, as well as injury

models, suggests that this is a robust phenomenon in the

preclinical literature. Further work is needed to dis-

sociate the mechanisms by which TBI reduces response

inhibition in an effort to develop treatment strategies

specific to TBI-induced motor impulsivity.

Choice impulsivity
Choice impulsivity is a term that captures decisions that

result in immediate gains at the cost of long-term bene-

fits. Commonly, this is referred to as ‘discounting’ the

value of future reinforcers/rewards, which is thought to

be because of the cost associated with waiting. One of the

most common ways for choice impulsivity to be mea-

sured is through tasks that manipulate delays and rein-

forcer magnitudes parametrically to determine individual

levels of temporal discounting, and impulsive choice is

operationalized as preference for smaller, immediate

reinforcers over larger, delayed reinforcers. Large-scale

TBI and executive function Ozga et al. 619



increases in choice impulsivity may result in overall poor

decision-making, which can cause financial difficulties,

physical health problems, and overall adverse life out-

comes (Hamilton and Potenza, 2012; Boyle et al., 2013).

Clinical evidence: Impulsive choice is assessed primarily

using various delay discounting procedures. In general,

such procedures involve discrete-trials choices between a

smaller, more immediate reinforcer and a larger, delayed

reinforcer. For humans, reinforcers are hypothetical

monetary rewards in most cases. Although the basic

premise of delay discounting procedures is the same,

several variations exist, which differ in the way that

delays and/or reinforcer amounts are presented to sub-

jects (Vanderveldt et al., 2016). For example, during the

‘adjusting-amount procedure’ (Du et al., 2002), the

magnitude of the smaller reinforcer is titrated during each

trial until a point of indifference is calculated, which is

defined as the magnitude at which the subject chooses

each magnitude/delay alternative with equal frequency.

In general, greater choice for the smaller, more immedi-

ate reinforcer is considered impulsive and results in

indifference points at smaller magnitudes.

Evidence from clinical TBI studies suggests that patients

display increased impulsive choice following TBI,

reporting that TBI patients choose smaller, immediate

reinforcers over larger, delayed reinforcers more than

healthy controls matched for age, sex, and educational

status (Dixon et al., 2005; McHugh and Wood, 2008;

Sellitto et al., 2010; Wood and McHugh, 2013). Such

deficits in choice impulsivity have been reported

following assessment on adjusting-amount procedures

using various hypothetical monetary amounts as well as

following mild, moderate, and severe concussive TBI to

the frontal cortex (Dixon et al., 2005; McHugh and Wood,

2008; Sellitto et al., 2010; Wood and McHugh, 2013).

Indeed, it seems as though deficits in choice impulsivity

may be frontally mediated given that patients with TBI

outside of the frontal lobe show performance similar to

that of healthy controls (Sellitto et al., 2010). However,

given the cross-sectional nature of clinical data in TBI

patients, a temporal pathway between occurrence of TBI

and choice impulsivity cannot be discerned.

Preclinical evidence: Despite the high translational validity

of delay discounting procedures for assessing choice

impulsivity, only one study has used it in the field of

experimental TBI, using the Evenden and Ryan (1996)

procedure. During this procedure, delays to the larger

reinforcer are systematically increased across blocks of

trials within each session while reinforcer magnitudes are

held constant. In general, choices are between one food

pellet delivered immediately and three food pellets

delivered after a delay. During the first block of trials, the

delay to both reinforcer options is 0 s, and the delay to the

larger reinforcer increases systematically across blocks

within sessions. Choice for the smaller, immediate

reinforcer is considered impulsive in conditions where

reinforcement can be maximized by maintaining exclu-

sive choice for the larger, delayed reinforcer. Following

severe or mild focal TBI to the bilateral frontal cortex in

rats, impulsive choice increased, indicated by sig-

nificantly more choice for the smaller, immediate rein-

forcer for TBI rats relative to shams (Vonder Haar et al.,
2017). Not surprisingly, deficits in choice impulsivity

were initially quite pronounced following severe TBI,

but actually recovered to sham levels. Surprisingly, while

mild TBI animals had relatively small increases in

impulsivity relative to shams, their deficits persisted for

the 8 weeks of testing. These results suggest that pure

tissue damage may not be a primary mechanism driving

impulsivity after TBI.

Summary: Impulsivity is a major issue for individuals

living with TBI. Notably, high levels of impulsivity could

also be a contributing risk factor to TBI in clinical

populations. However, at least in one study, choice

impulsivity was increased following experimental TBI,

lending support for a directional relationship between

clinical TBI and enhanced impulsive decision-making.

Despite this, preclinical data suggest that the persistence

of such deficits may be dependent upon the severity of

injury. Given that only one study has examined effects of

experimental TBI on choice impulsivity, further research

is needed to expand upon these findings using alter-

native delay discounting procedures and injury models.

Risk-taking
Risk-taking behaviors may be somewhat controversial to

include with impulsivity, as impulsivity is defined com-

monly to include actions/choices that will have long-term

detrimental effects. By contrast, risky decisions only

probably lead to long-term problems. However, they are

part of a cluster of symptoms identified in TBI patients,

have considerable overlap with impulsive behaviors, and

can lead to similar negative outcomes.

Clinical evidence
Numerous procedures exist for assaying risk-taking

behaviors in humans, including probability-discounting

tasks, various gambling tasks, the Balloon-Analog Risk

Task (BART), and others (Bechara et al., 1994; Rogers
et al., 1999; Lejuez et al., 2002). The most common

assessment for use with clinical populations is the Iowa

Gambling Task (IGT; Bechara et al., 1994). During the

IGT, 100 discrete-trials choices are presented between

four decks of cards, two of which are relatively ‘safe’ and

two of which are ‘risky’. The two ‘safe’ options are set up

to return the highest overall rate of reinforcement ($50

with frequent penalties ranging from $25 to $75, or $50

with infrequent penalties of $250), while the ‘risky’

options give large amounts, but low overall rates of

reinforcement ($100 with frequent penalties ranging from

$100 to $350, or $100 with infrequent penalties of $1250).
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MacPherson et al. (2009) and Cotrena et al. (2014) found
no differences in choice on the IGT between frontal TBI

patients and healthy controls matched for age and edu-

cation status during the first 60 trials of the task (both

groups were largely indifferent between alternatives).

However, between trials 61 and 100, TBI patients

remained indifferent between options while controls

chose the two ‘safe’ options significantly more, suggest-

ing that control participants may have been more sensi-

tive to the contingencies associated with each alternative.

Xiao et al. (2013) observed a similar pattern of results with

frontal TBI patients, although deficits in risky decision-

making were observed as early as trial 21 out of 100.

An alternative assessment for risk-taking behavior is the

Cambridge Gambling Task (CGT; Rogers et al., 1999),
which has the major advantage of presenting known

probabilities, and thus potentially achieving a more pure

measurement of risk preference. During this task, parti-

cipants are presented with 10 boxes, some of which are

red and some blue, representing the probability for that

trial. There is a token hidden in one box and participants

must wager an amount on the box color in which they

believe the token is located. Participants ‘win’ the

wagered amount if they were correct or ‘lose’ if it is in the

other color box. The primary risk-taking outcome mea-

sure is ‘risk adjustment’ and is calculated as the percen-

tage of points risked across more-certain to less-certain

probabilities. In addition, the latency between trial pre-

sentation and when participants place a bet is measured,

and reduced deliberation times are reflective of

enhanced motor impulsivity. When matched for age and

education status, TBI patients had higher risk adjust-

ment on the CGT at 4 and 6 months postinjury (Salmond

et al., 2005; Newcombe et al., 2011). Brain injury patients

also showed reduced deliberation times, lending addi-

tional support for impaired response inhibition following

frontal TBI.

An alternative means for assessing risk tolerance is the

BART (Lejuez et al., 2002), in which discrete trials are

presented that begin with an un-inflated balloon on a

computer screen. Participants click a button to inflate the

balloon and gain two points per click. If the balloon is

over-inflated, it may burst and participants lose all points

acquired during the trial. The burst point varies unpre-

dictably across trials such that participants cannot

develop a rule for how many times to click before the

balloon bursting. At any point during the trial, they may

click an alternative button to ‘cash out’ their acquired

points and move on to the next trial. During this proce-

dure, a balance is needed between tolerating some risk,

but not too much, to maximize returns. The primary

dependent measure is risk tolerance, which is calculated

as the average number of clicks to inflate the balloon per

trial, excluding trials in which the balloon burst: more

clicks are indicative of greater risk tolerance and greater

risk-taking behavior. In the single study utilizing the

BART with TBI patients, adolescents at least 12 months

postinjury were assessed and compared with healthy

control participants matched for handedness, age, sex,

race/ethnicity, and maternal education status (Chiu et al.,
2012). During this task, no differences in risk tolerance

were observed between TBI and controls. The differ-

ences in findings between the BART and IGT/CGT are

interesting, and may be because of differences in clinical

samples (adolescent vs. adult), but also suggest that dif-

ferent risk-taking assessments may tap into alternative

forms of risk-based decision-making.

Preclinical evidence
Risk-taking behavior has been largely unstudied in ani-

mal models of TBI. Recently, our laboratory has per-

formed one such study using a rodent analog of the IGT,

referred to as the rodent gambling task (RGT; Zeeb et al.,
2009). The primary difference between the IGT and

RGT is that the rodent version has a distinct, most-

optimal option, while on the IGT, the two ‘risky’ choices

and the two ‘safe’ choices are equivalent to one another.

As in the IGT, rats make choices among four options, two

‘safe’ and two ‘risky’. Each choice is associated with a

different number of sucrose pellets for ‘wins’ (1–4), and

different penalties for ‘losses’ (5–40 s timeout), with the

two-pellet option conferring the highest overall rate of

reinforcement, followed by the one-pellet option

(Winstanley and Clark, 2016). Following severe focal

TBI to the bilateral frontal cortex of rats, there was a

significant shift in choice away from the most-optimal

option (Shaver TK, Ozga JE, Zhu B, Anderson KG,

Martens KM, Vonder Haar C, unpublished data).

Notably, this shift in choice preference reflected an

increased preference for both the safer, slightly sub-

optimal one-pellet option, as well as the riskier three-

pellet and four-pellet options, highlighting a complex

decision-making phenotype. These deficits persisted for

12 weeks postinjury, and occurred even if rats were

extensively pretrained on the task before injury.

Summary
The clinical literature emphasizes risk-taking as a major

concern for patients with TBI. However, phenotypes are

complex, as illustrated by differences in the BART and

other gambling tasks. Further, preclinical evidence is

quite limited, and identifies a more generalized deficit

that may not be selective to risk-taking, but instead, may

be more reflective of a generalized change in reinforce-

ment/punishment sensitivity. Further research will be

needed to identify which aspects of cognitive-behavioral

therapies may be directed toward these patients.

Behavioral flexibility
Behavioral flexibility refers to the ability to adapt to

changing reinforcement contingencies and is often con-

trasted with perseveration. It is typically assessed with

discrimination-reversal procedures of varying complexity,

TBI and executive function Ozga et al. 621



several of which have been used in the fields of clinical

and experimental TBI (Berg, 1948; Daum et al., 1989;
Sherer et al., 2003; Hashimoto and Toshima, 2005; Myers

et al., 2006; Martens et al., 2012; Martens et al., 2013;
Bondi et al., 2014; Vonder Haar et al., 2014a; Chou et al.,
2016).

Clinical evidence
In simple discrimination-reversal learning, subjects are

trained to discriminate between two response alternatives

that are distinguished by set stimuli (e.g. lights, shapes)

and that discrimination is subsequently reversed. During

the task, discrete trials are presented in which responding

associated with the ‘correct’ stimulus is reinforced, while

responses to other alternatives are on extinction. Once

discrimination occurs reliably, the contingencies are

reversed and the number of trials required to shift to a

predefined mastery criterion is taken as a measure of

behavioral flexibility, in which more trials are indicative

of less flexibility. During simple discrimination-reversal

assessments using lights, tones, or shapes as dis-

criminative stimuli, TBI patients require more trials to

reach mastery criteria relative to non-TBI patients mat-

ched for age and handedness (Daum et al., 1989;

Hashimoto and Toshima, 2005; Myers et al., 2006) and
never meet such criteria in some cases (Daum et al., 1989;
Hashimoto and Toshima, 2005).

Another flexibility measurement, the Wisconsin Card

Sorting Task (Berg, 1948), is commonly used in neu-

ropsychiatric testing. In the task, participants are given

several cards in a deck and asked to sort them, but are not

told how the cards should be sorted. There are multiple

classification systems (e.g. color, shape, number,) and

each time the participant sorts a card, the experimenter

tells them whether the classification is correct or not.

However, after 10 cards are sorted correctly, the classifi-

cation system changes and the number of trials required

for participants to adapt to the new classification is taken

as a measure of behavioral flexibility. On this task,

patients with moderate-to-severe TBI are impaired and

require more trials to meet mastery criterion (Sherer et al.,
2003). However, this task is not sufficient in and of itself

to delineate those with the worst TBI-related deficits

(Greve et al., 2002, 2009).

Preclinical evidence
Animal models largely mirror the clinical tasks with

regard to assessing flexibility, with stimuli (e.g. lights,

odors, tones) and response options (e.g. lever press, nose

poke) that are relevant for the animal. Severe focal TBI

to the frontal cortex impairs behavioral flexibility using

simple discrimination-reversal tests in rats and mice.

Specifically, TBI animals show a range of deficits from

small (additional trials or sessions to criterion) to major

(never achieving criterion) during postacute and early

chronic recovery periods (2–5 weeks postinjury; Martens

et al., 2012; Bondi et al., 2014; Vonder Haar et al., 2014a,
2014b; Chou et al., 2016). In addition to acute impair-

ments, Chou et al. (2016) suggest that deficits persist for
5.5 months postinjury.

Additional complexity can be added to discrimination-

reversal tasks in nonhuman animals by utilizing complex

multimodal discriminative stimuli (e.g. odor+ texture,

light+ location), and shifting the discrimination only

along one dimension of discriminability. This procedure,

known as attentional set-shifting (Birrell and Brown,

2000), is roughly analogous to the Wisconsin Card Sorting

Task used with humans. This results in a subtler shift in

reinforcement contingencies (50% reinforced rather than

extinction), which can make for a more difficult task.

This form of learning is also impaired following unilateral

parietal focal injury in rats, although only at higher injury

severities (Bondi et al., 2014), but unaffected by unilateral

frontal focal injury (Chou et al., 2016).

Summary
Impairments in flexibility affect an individual’s ability to

appropriately change in response to their environment in

a fundamental way, and may contribute to a poorer

quality of life for individuals with TBI who report these

symptoms. This phenomenon has been replicated in the

preclinical literature, but only after relatively severe

injuries, potentially limiting its applicability to the clin-

ical condition. However, these data may serve as a

starting point for the evaluation of pharmacotherapies,

and could be extended to more complex discrimination-

reversal procedures and more mild injury models.

Working memory
Working memory (WM) refers to the ability to remember

a given stimulus over a relatively short time frame

(commonly seconds to minutes). The assessment of WM

typically involves presenting a stimulus, removing it for a

given delay, and then testing for recall.

Clinical evidence
Numerous procedures exist for assessing WM in humans

using verbal, visual, and spatial modalities (Dunning

et al., 2016). Two common procedures that have been

used in the field of clinical TBI are the digit-span and n-
back tasks (Asloun et al., 2008; Levin et al., 2002; Chen
et al., 2012). The digit-span task measures verbal WM

and presents a sequence of numbers as the stimulus,

which subjects are then asked to reproduce after a brief

delay. Sequence length is gradually increased with each

correct response. The primary dependent measure in this

task is the number of digits correctly remembered in

sequence, with fewer digits indicating impaired WM.

Digit span is commonly included as part of the Weschler

Adult Intelligence Test battery, and so has been fairly

extensively tested. While it is relatively common to find

some level of impairment post-TBI (Scherwath et al.,
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2011; Woods et al., 2011), there are studies that report no

effect after milder TBI (Demery et al., 2010; Chen et al.,
2012). In addition, some researchers have noted that this

task may be confounded by the motivation of the indi-

vidual, potentially exacerbating measurements in TBI

populations (Clark et al., 2014; West et al., 2011).

Similar to the digit-span task, the n-back task presents a

sequence of stimuli (commonly numbers or letters), one

at a time. During each stimulus presentation, the parti-

cipant is instructed to identify whether the current sti-

mulus is the same as the one presented n trials

(commonly 2 or 3) before the current stimulus. Thus, if

n= 3, the participant must identify when the current

stimulus matches the one presented three trials before

the current stimulus, typically with a mouse click or

button press. Task difficulty increases as n increases and

thus, the primary dependent measure is typically the

proportion of correct responses at 2-back or 3-back, with

smaller proportions indicating impaired WM. Levin et al.
(2002) assessed WM of adolescents five years postmild or

postsevere TBI compared with healthy controls, matched

for age and parental education status, using 1-back,

2-back, and 3-back tasks. Adolescent patients with brain

injuries demonstrated reduced WM performance on all

three task levels. Similarly, adult patients with severe or

mild TBI showed reduced WM performance on 1-back,

2-back, and 3-back tasks compared with matched control

participants (Asloun et al., 2008; Chen et al., 2012).

Preclinical evidence
Despite the potential impact on daily function in clinical

populations, memory impairments following experi-

mental TBI have primarily been studied using the

MWM, and largely focused on reference memory as

opposed to WM. However, alternative measures for

assessing WM deficits include variants of the MWM as

well as delayed match-to-sample (DMTS) tasks. Here,

we limit our discussion to these, given that they are

highly dependent upon executive function relative to the

traditional reference MWM.

Morris water maze variants
The traditional form of the MWM is ubiquitous in the

field of experimental TBI. In this task, animals are placed

in a tank of water, and may escape by locating a sub-

merged platform. Animals gradually reduce their latency

to escape using visual cues located around the room,

typically considered a measure of reference memory that

is highly hippocampal-dependent (Morris, 1984). Several

variations of the MWM have been implemented aimed at

assessing WM. These variations include a moving plat-

form wherein the animals’ ability to track changing

locations of the platform is assessed (Hamm et al., 1996;
Hoane et al., 2003). During testing, the platform is sub-

merged in a new quadrant of the MWM tank. After the

platform is placed in its new location, animals are placed

into the tank and given a brief period of time to locate the

platform. If the platform is not located by the animal after

the time interval elapses, the experimenter guides the

animal to the platform. Following the first trial, con-

sidered an ‘information’ trial, additional trials are con-

ducted with several minutes separating the start of each

trial, and latencies to find the platform are taken as a

measure of WM function. Because of the length of this

delay, these procedures are considered different from

delayed match-to-sample parameters described below,

although there is considerable overlap. Longer latencies

on this procedure have been indicative of WM deficits

following moderate bilateral parietal (Hamm et al., 1996),
severe frontal (Hoane et al., 2003, 2004, 2005; Kokiko
et al., 2006) and severe unilateral parietal TBIs (Quigley

et al., 2009; Swan et al., 2011) during acute recovery.

Evaluation of chronic deficits has been limited, but

unpublished data suggest that WM impairments do not

resolve after focal, frontal TBI (Fig. 1).

Delayed match-to-sample
In general, DMTS procedures include a sample stimulus,

followed by two comparison stimuli, and choice for one of

the two comparison stimuli is recorded. Choice for the

comparison stimulus that matches the sample stimulus is

reinforced, while choice for the novel comparison sti-

mulus results in extinction or timeout. Following accu-

rate discrimination between the two comparison stimuli

and correct ‘matching’ to some criterion, a delay is

introduced such that the animal must remember which

sample stimulus was presented for a period of time

before the comparison stimuli are presented. A ‘non-

match’ version of this procedure follows an opposite rule

in which animals must identify the stimulus that is novel

after the delay.

Various DMTS procedures have been used in the field of

experimental TBI where stimuli are associated with

spatial location. In one study that used an operant

chamber for WM assessment in rats (Lindner et al., 1998),
one lever was extended into the chamber and a response

on that lever resulted in lever retraction (sample stimu-

lus). Following an intertrial interval, which varied from 0

to 50 s, both levers were extended into the chamber (i.e.

comparison stimuli) and animals were trained to respond

on the lever that did not match the sample stimulus (non-

match-to-sample). Following severe focal injuries to the

lateral sensorimotor cortex, rats demonstrated a transient

impairment, while those that received severe bilateral

frontal cortex injuries, had deficits that lasted up to

11 weeks postinjury.

Although operant techniques represent a common pro-

cedure for testing WM, various maze assessments are

more prevalent in experimental TBI (e.g. T-mazes and

eight-arm radial mazes). In general, T-mazes have

included a platform that allows animals to escape from a

tub of water (Whiting and Hamm, 2006; Hoskison et al.,
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2009). During one variation of this procedure, a divider is

placed on one side of the maze during forced-exposure

trials, so that the animal is forced to enter that side and

reach a platform to escape from the water (sample sti-

mulus). Immediately or after a delay, a free-choice trial is

given in which the divider is removed and the animal can

enter either side of the maze (comparison stimuli). When

the animal enters the same side of the maze as that

presented during the forced-exposure trial, the choice is

reinforced by escaping the water. Using this procedure,

Whiting and Hamm (2006) found that when the delay

between sample and comparison stimuli was relatively

short (i.e. 15 s), matching of sham animals and those

experiencing moderate lateral focal TBI reached ∼ 90%

accuracy. Although performance was disrupted at rela-

tively long delays (e.g. 30 and 120 s) for both groups (80

and 75% respectively for sham), it was disrupted to a

larger degree following injury, with TBI animals dis-

playing an ~ 15% reduction in accuracy relative to sham.

Similarly, performance was disrupted at 5 and 10 s delays

following unilateral parietal TBI in rats relative to sham

animals (Kline et al., 2002; Hoskison et al., 2009; Dash

et al., 2010; Kobori et al., 2011; Titus et al., 2016) and in

one study, deficits persisted until at least 16 weeks

postinjury (Hoskison et al., 2009; Dash et al., 2010; Kobori
et al., 2011; Titus et al., 2016).

Similar to results from DMTS and T-maze tasks, animal

studies suggest that WM, as measured by the eight-arm

radial maze, is impaired after mild to severe focal uni-

lateral TBI (Lyeth et al., 1990; Enomoto et al., 2005;

Taylor et al., 2008; Sebastian et al., 2013; Shin et al., 2016).
The typical radial maze paradigm involves delayed

nonmatch to sample. Reinforcers are placed in four of the

eight arms, and animals must remember locations they

have already visited. Deficits, as measured by number of

errors (repeated visits), on this task after TBI may be

quite long lasting, as one study identified deficits even

when testing began 6 weeks after injury (Sebastian et al.,
2013).

Summary
Deficits in WM after TBI are robust in the preclinical

literature and relatively common in clinical practice across

many different approaches to testing. Most interesting is

the animal finding that WM deficits happen regardless of

location of injury. Given that WM is commonly con-

sidered to be frontal-dependent, this suggests that there

is more at work than mere tissue loss, and that other

factors, such as long-term alteration to neurotransmission,

may play a role. Whereas motivational deficits are

emphasized as a potential confound in clinical work, the

animal research appears quite reliable in this regard,

perhaps by using salient reinforcers such as escape from

water or palatable sucrose pellets.

Monoaminergic system changes following
traumatic brain injury
The brain regions that play prominent roles in executive

function tasks discussed above include the frontal cortex,

striatum (which includes the nucleus accumbens and

caudate-putamen), and hippocampus (Baron et al., 1985;
Hicks et al., 1993; McDonald et al., 2002; Chudasama and

Robbins, 2006). These regions, and the circuits they

form, are intimately dependent upon proper mono-

aminergic function. In the following sections, dopamine

(DA), serotonin (5-hydroxytryptamine, 5-HT), and nor-

epinephrine (NE) changes following TBI are discussed,

with an emphasis on changes in brain regions known to

be critical for executive function. It should be noted that

although changes to monoaminergic systems are

Fig. 1

Long-term, selective deficits in working memory after traumatic brain injury (TBI) (Martens KM, Vonder Haar C, Swan AA, Emery MA, Clayton ER,
Peterson TC, Hoane MR, unpublished data). Rats (3 months of age) received a bilateral frontal, focal TBI and were tested up to 18 months postinjury.
(a) TBI caused deficits in the reference version of the Morris water maze (P=0.012), which resolved by 9 months postinjury. (b) TBI also caused
deficits in a working memory version of the task where the platform was moved to a novel location daily, but these never resolved (P=0.004).
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discussed in terms of disruptions, such changes may not

necessarily be detrimental but rather, may reflect com-

pensatory adaptations.

Dopamine
DA is a prominent signaling system with widespread

effects and is critical for frontal-dependent, striatal-

dependent, and hippocampal-dependent executive

function (Beaulieu and Gainetdinov, 2011; Haber, 2014;

Trantham-Davidson and Chandler, 2015). DA is heavily

concentrated in striatal regions, and serves a strong sig-

naling function within the prefrontal cortex. Changes to

the DA system have been suggested to underlie chronic

behavioral and cognitive dysfunction following TBI

(Bales et al., 2009). This injury-induced disruption occurs

directly, but also by indirect glutamatergic and

GABAergic signaling alterations (Bales et al., 2009).

Clinical evidence
There are limited data available regarding the relation-

ship between clinical TBI and DA transmission, and a

small portion of such data are equivocal. Using positron

emission and single-photon emission tomography, clin-

ical imaging studies converge on moderate and severe

TBI-related reductions in striatal DA transporter den-

sities when compared with healthy control participants

matched for age and educational status (Donnemiller

et al., 2000; Wagner et al., 2014). However, effects of

clinical TBI on DA receptor densities and metabolism

are less clear. Studies suggest that striatal D2 receptor

binding is altered following moderate or severe TBI,

although there are reports of both up-regulation and

down-regulation (Donnemiller et al., 2000; Wagner et al.,
2014). Similarly, it seems as though DA turnover is sig-

nificantly altered following severe TBI (both increases

and decreases have been reported; Bareggi et al., 1975;
Porta et al., 1975; Vecht et al., 1976; Majchrzak et al., 1979;
Massucci et al., 2004). Such discrepant evidence may be

because of contributing sex differences and/or genetic

profiles (Wagner et al., 2007, 2014) in which DAergic

transmission is more heavily impacted for female patients

and for those with certain functional genetic variants

(Wagner et al., 2007).

Preclinical evidence
Given the sparse and sometimes conflicting evidence for

DA system changes following clinical TBI, as well as the

cross-sectional nature of the data that precludes the

detection of a causal relationship between TBI and

DAergic transmission, the field of experimental TBI has

focused on evaluating DA changes at each step in the

process of neurotransmission – synthesis, distribution,

and breakdown – using highly reproducible animal

models of injury.

Tyrosine hydroxylase (TH) is the rate-limiting enzyme

that is responsible for converting the amino acid

L-tyrosine to L-DOPA. Given that L-DOPA is the

immediate precursor for DA synthesis, changes in TH

levels lead to alterations in DA signaling. Preclinical work

suggests that TH may be influenced differentially across

brain regions and time. Notably, disruptions in TH

activity may not be apparent during the acute post-TBI

phase (Huger and Patrick, 1979), but rather manifest

themselves later during recovery (Yan et al., 2001, 2007;
Shin and Dixon, 2011; Shin et al., 2011, 2012). Increased
TH in the frontal cortex and substantia nigra have been

observed following severe focal TBI in rats (Yan et al.,
2001, 2007), but only at chronic time points (28+ days

postinjury). In the same model of injury, Shin et al. (2011,
2012) determined the functional ability of TH to convert

L-tyrosine to L-DOPA, with a similar lack of differences

early postinjury, but decreases in TH function for TBI

rats at 1 and 4 weeks postinjury. While the effect of TBI

on TH activity has primarily been examined in the

striatum and substantia nigra of rats (Yan et al., 2001,
2007; Shin and Dixon, 2011; Shin et al., 2011, 2012),

mRNA levels for TH are elevated after mild blast injury

in the locus coeruleus and raphe nucleus (Kawa et al.,
2015), and protein levels and functional capacity of TH

are elevated after moderate focal injury in the prefrontal

cortex (Kobori et al., 2006). Together, the evidence sug-

gests that TH function is disrupted following various

experimental TBIs, but the nature of disruption may be

dependent upon both the region of interest, and the time

point at which it is measured (i.e. increase or decrease in

activity). Vesicular storage of DA and other monoamines

may also be altered after TBI as some alleles of the

vesicular monoamine transporter are associated with

cognitive dysfunction after TBI in patients (Myrga et al.,
2016), and vesicular monoamine transporter is down-

regulated after experimental TBI, albeit only in female

rats (Xu et al., 2016).

Given that TH activity is disrupted post-TBI, it follows

that DA release and basal DA concentrations also

experience alterations. Indeed, evidence from high-

performance liquid chromatography and western blot

studies with rats suggests that there are initial increases in

DA levels in the frontal cortex and striatum postmild

blast or postsevere focal TBI that persists for at least

28 days (Massucci et al., 2004; Kobori et al., 2006; Kawa
et al., 2015). While higher DA levels have been measured

post-mortem after TBI, in-vivo recordings of DA release

from presynaptic neurons using fast scan cyclic voltam-

metry or microdialysis show significantly lower levels for

severe and moderate focal-TBI rats up until 8 weeks

postinjury when compared with sham rats (McIntosh

et al., 1994; Wagner et al., 2005; Shin and Dixon, 2011;

Huang et al., 2014a; Chen et al., 2015, 2017). In turn, DA

transporter down-regulation may be due to the sig-

nificant, chronic reduction in frontal and striatal DA

release following TBI, leading to a reduction in DA

reuptake and clearance from the synapse (Yan et al., 2002;
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Wagner et al., 2005; Wilson et al., 2005; Huang et al.,
2014a; Shimada et al., 2014). The effect of TBI on DA

transporter down-regulation is true not only for the

frontal cortex and striatum (Yan et al., 2002; Wagner et al.,
2005; Wilson et al., 2005), but also for the midbrain

(Shimada et al., 2014), and occurs even in the case of mild

TBI (Yan et al., 2002; Wagner et al., 2005; Wilson et al.,
2005; Huang et al., 2014a; Shimada et al., 2014). This is

perhaps because of the action of DA as an excitotoxic

agent, in which elevated levels in the acute post-TBI

phase may lead to excitotoxicity and oxidative damage,

resulting in lower levels of DA release at chronic time

points and compensatory changes in DA transporter

densities (Olney et al., 1990; Wagner et al., 2005).

Moreover, DA transporter down-regulation appears to be

a chronic effect and persists for at least 28 days postinjury

for rats (), although additional time points have not be

evaluated.

In rat models, some have reported transient (< 24 h)

reductions in D1 receptor density in the striatum after

TBI (Henry et al., 1997), but another study observed a

complex relationship at 24 days postinjury of decreased

D1 receptor density in dorsal striatum, and increased D1

levels in the nucleus accumbens, but only after mild TBI

(Vonder Haar et al., 2016). Moreover, no changes in

striatal D2 receptor densities have been recorded across

multiple time points (Henry et al., 1997; Wagner et al.,
2005, 2008; Vonder Haar et al., 2018).

In addition to reuptake by transporters, the second

mechanism by which DA is removed from the synapse is

by enzymatic degradation; the enzymes catechol-O-

methyl transferase (COMT) and monoamine oxidase

(MAO) break down DA into its primary metabolites,

3,4-dihydroxyphenylacetic acid (DOPAC) and homo-

vanillic acid. Although there have been no studies

assessing effects of TBI on COMT or MAO directly,

existing evidence suggests that DA metabolism may be

affected acutely post-TBI. However, there is some dis-

crepancy in the preclinical TBI field, in which some work

suggests that there are heightened levels of DOPAC and

homovanillic acid of rats in the short term, corresponding

with elevated DA levels (Massucci et al., 2004; Shin and

Dixon, 2011; Shin et al., 2012), while others report

reduced levels of such metabolites in mice and rabbits

during acute recovery (Edvinsson et al., 2009; Shen et al.,
2011). In addition, DOPAC/DA ratios (a measure of DA

turnover) are significantly altered in rats postinjury (both

increases and decreases have been reported; Massucci

et al., 2004; Shen et al., 2011), giving evidence for altered

DA metabolism and not simply an up-regulation or

down-regulation of DOPAC as a response to changes in

DA levels. However, by 7 days postinjury, no differences

were found between sham and injured rats, suggesting

that DOPAC levels (and potentially COMT and/or MAO

levels) become normative during the postacute recovery

period (Shin and Dixon, 2011; Shin et al., 2012).

Summary
In addition to chronic, detrimental effects of TBI on DA

synthesis, distribution, and breakdown, moderate focal

TBI results in a significant, progressive loss of DA neurons

in the substantia nigra (Wagner et al., 2009; Hutson et al.,
2011; van Bregt et al., 2012), which may be representative

of the established link between TBI and the development

of Parkinson’s disease (Semchuk et al., 1993). Thus, TBI

has widespread effects on the DAergic system, affecting all

aspects of DA neurotransmission. Given the evidence from

both experimental and clinical TBI fields, treatment has

focused largely on providing DAergic pharmacotherapies

(e.g. D-amphetamine, methylphenidate) for TBI patients

to aid in symptom reduction following injury by increasing

DA signaling (Bales et al., 2009), although these pharma-

cotherapies are not without potential pitfalls (see below:

Special Considerations for Pharmacotherapy following

TBI). Moreover, given the unique time course of changes

to DA after TBI, the exact timing of pharmacotherapies

will be of critical importance.

Norepinephrine
Of all the monoaminergic systems, NE has received the

least attention in regard to alterations following TBI. DA

is converted to NE by the rate-limiting enzyme, DA-β-
hydroxylase. Therefore, the disruptions in TH or DA

activity discussed above also contribute to alterations in

NE activity.

Clinical evidence
The two clinical TBI studies that evaluated changes in

NE signaling relative to non-TBI control participants

suggest that brain injury increases NE metabolism,

indicated by heightened levels of NE’s primary meta-

bolite, 3-methoxy-4-hydroxyphenylglycol. However, this

was only measured at between one and 12 days post-

injury (Markianos et al., 1992, 1996). Although NE has

not been a prime target of interest for clinical TBI

research, selective NE reuptake inhibitors are a relatively

common treatment for depression and anxiety, and may

also improve attention, all of which suffer some impair-

ment in TBI patients (Hibbard et al., 1998; Jorge and

Robinson, 2003; Juengst et al., 2017). Thus, further

clinical work investigating NE activity following clinical

TBI is needed.

Preclinical evidence
Experimental work suggests that brain injury leads to

significant increases in NE levels in the prefrontal cortex,

hippocampus, cerebellum, and hypothalamus of rats (at

2 h, 7 days, and 14 days), which corresponds with

increased TH levels at these same time points (Huger

and Patrick, 1979; Kobori et al., 2006; Kawa et al., 2015).
In addition, acute increases in NE occur specifically at

the site of injury, followed by a return to levels compar-

able to those of sham rats by as early as one week post-

injury (McIntosh et al., 1994; Levin et al., 1995;

626 Behavioural Pharmacology 2018, Vol 29 No 7



Dunn-Meynell et al., 1998; Fujinaka et al., 2003). Thus,

the evidence suggests that relatively acute disruptions

occur during NE synthesis and distribution/release fol-

lowing injury in experimental studies, although clinical

work is needed to validate these findings in TBI patients.

In addition to significant increases in basal NE, early

studies suggested that α1A receptor subtypes are tran-

siently reduced at the injury site and may persist until

30 days postinjury in rats (Prasad et al., 1992; Levin et al.,
1995), while more current work reports increased α1A
receptor mRNA in the medial prefrontal cortex following

TBI (Kobori et al., 2011).

Summary
While NE transmission is likely disrupted following TBI,

research is lacking in specificity of the nature of those

disruptions. It is likely that NE signaling disruption fol-

lowing TBI could influence executive function through

the locus coeruleus innervation of the prefrontal cortex

(Logue and Gould, 2014). In particular, whether den-

sities of other receptor subtypes are altered, what changes

occur at the NE transporter, and the degree to which

these changes may contribute to behavioral dysfunction

remain open questions. It may also be a clinical concern

that elevated NE levels have been detected after TBI,

yet selective NE reuptake inhibitors may be used clini-

cally for a host of conditions in these patients. Overall,

research regarding TBI and NE disruption is lacking and

there is a critical need for both clinical and

preclinical work.

Serotonin
Although more research has been conducted on 5-HT

compared with NE, relatively little work has investigated

the mechanisms by which TBI disrupts 5-HT signaling.

Clinical evidence
Clinical studies suggest that 5-HT transmission is indeed

disrupted following TBI, revealed by significant changes

in 5-HT metabolites in the cerebrospinal fluid of TBI

patients (both increases and decreases have been repor-

ted; Porta et al., 1975; Vecht et al., 1976; Majchrzak et al.,
1979; Markianos et al., 1992, 1996). Discrepancies in the

nature of such changes in 5-HT metabolite levels may be

explained, at least in part, by measurement time points,

with 5-HT being elevated during the acute post-TBI

phase and reduced during chronic recovery (Porta et al.,
1975; Vecht et al., 1976; Majchrzak et al., 1979; Markianos

et al., 1992, 1996). The mood-altering effects of 5-HT

have been a primary area of focus, given that the devel-

opment of mood disorders such as depression and anxiety

are prevalent following brain injury (Hibbard et al., 1998;
Jorge and Robinson, 2003; Juengst et al., 2017) and the

most common treatment for such disorders are selective

5-HT reuptake inhibitors (SSRIs; Ciuna et al., 2004).

Although effects have not been assessed directly, it is

possible that 5-HT signaling disruption following TBI

may also influence executive function (Cifariello et al.,
2008). Indeed, some have reported significant inverse

correlations between 5-HT signaling and impulsive

behavior (Harrison et al., 1997; Dalley et al., 2002), and
inverse relations have been identified between 5-HT

metabolites and aggression levels, although these may

also be mediated by DA signaling (Coccaro et al., 2010).

Preclinical evidence
Tryptophan hydroxylase (TPH) is the rate-limiting

enzyme that is responsible for interacting with the

amino acid tryptophan and converting it to 5-HT, which

is then acted upon by DOPA decarboxylase to create

5-HT. Although TPH is significantly increased in the

dorsal raphe nucleus and locus coeruleus in rats acutely

following mild blast TBI (i.e. up until 24 h), by 48 h post-

TBI, TPH levels return to those that are comparable to

sham rats (Kawa et al., 2015). Similarly, acute changes

have been observed in rat basal 5-HT levels post-TBI

(10 min; Busto et al., 1997), suggesting that acute dis-

ruptions in TPH production directly affect 5-HT levels.

However, there is some discrepancy as to whether 5-HT

levels return to normal early during recovery. Some have

reported a return to sham levels by seven days postinjury

(Kawa et al., 2015), while others suggest that 5-HT levels

are elevated until at least 2 weeks postinjury (Mustafa

et al., 2017). Such discrepant findings may be because of

the use of different injury models across studies, in which

mild TBI induced by weight drop may affect 5-HT

transmission longer into the recovery period than that

induced by blast (Kawa et al., 2015; Mustafa et al., 2017).
Given the limited and sometimes conflicting evidence,

further preclinical work is needed to dissociate the

mechanisms by which TBI affects 5-HT levels.

In addition to relative acute and transient disruptions in

5-HT synthesis and basal concentrations post-TBI, there

are no changes in 5-HT2A receptor densities in the

motor, prelimbic, agranular, sensory, or cingulate cortices

of rats at 15 days postinjury (Dam et al., 2013), although
more acute time points have not been assessed. In con-

trast, significant increases in 5-HT1A densities in the

hippocampus have been shown at 15 days postinjury

(Wilson and Hamm, 2002), which may contribute to

memory deficits that are seen following TBI (Dale et al.,
2016). Changes in other 5-HT receptors have not been

evaluated after TBI, potentially because of a lack of

strong radioligands for human patients, or because of the

inherent complexities in studying the numerous recep-

tors and their actions.

In terms of 5-HT deactivation, moderate or severe TBI

produces significant, chronic reductions in 5-HT trans-

porter densities in the frontal and cingulate cortices of

rats (Abe et al., 2016). At the same time, moderate TBI

leads to chronic increases in 5-HT transporter densities in

the raphe nucleus while having no effect on densities in

the hippocampus, thalamus, or amygdala of rats (Dam
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et al., 2007). Together, the evidence suggests that 5-HT

reuptake is dysregulated following TBI, but the nature of

such disruption may depend upon injury type and brain

region. In addition to 5-HT deactivation by reuptake,

5-HT enzymatic degradation may be disrupted following

TBI, which is in line with clinical evidence. Indeed,

significant reductions in 5-HIAA in the rat hippocampus

have been observed at 30 min post-TBI (Eschun et al.,
1992), although additional time points have not been

assessed.

Summary
Given the significant reduction in 5-HT transporters in

the frontal cortex, a critical region for executive function

(McDonald et al., 2002; Chudasama and Robbins, 2006),

as well as disruptions in 5-HT metabolism, it is possible

that disruptions in 5-HT breakdown and removal from

the synapse contribute to behavioral impairments after

TBI, although effects have not been assessed directly. In

addition to replicating the results discussed above using

alternative models of experimental TBI, the efficacy of

commonly prescribed SSRIs (i.e. 5-HT transporter

antagonists) on executive function following TBI should

be assessed thoroughly given that a large portion of TBI

patients experience postinjury depression and/or anxiety

(Hibbard et al., 1998; Jorge and Robinson, 2003; Juengst

et al., 2017) and are likely to be prescribed such

pharmacotherapies.

Special considerations for pharmacotherapy
following traumatic brain injury
Reduced sensitivity to reinforcement
TBI patients show significant impairments in executive

function, which may be due, in part, to insensitivity to

contingencies and natural reinforcement processes.

Executive function tasks include reinforcing (and often

concurrent punishing) consequences for appropriate

responding, with optimal responding in these tasks pro-

ducing higher rates of reinforcement. However, indivi-

duals with TBIs show reduced sensitivity to and

awareness of reinforcement contingencies (Schlund and

Pace, 2000; Schlund et al., 2001; Schlund, 2002a, 2002b;
Larson et al., 2007), and are slower to adapt choices fol-

lowing changes in reinforcing contingencies compared to

non-TBI controls (Schlund et al., 2001; Schlund, 2002a,
2002b). All of these processes are directly dependent on

DAergic signaling, and a large literature has demon-

strated the role of DA in primary reinforcement

(Cameron et al., 2014; Shnitko and Robinson, 2015),

reward expectation (Schultz et al., 1997; Cocker et al.,
2016), and punishment salience (Tomer et al., 2014; van
der Schaaf et al., 2014; Jean-Richard-Dit-Bressel et al.,
2018). Despite these large effects in patients, sensitivity

to contingencies may not be impacted at the most basic

level. As such, one study examined responding under

basic schedules of reinforcement (e.g. fixed ratio, fixed

interval, variable ratio, variable interval) between sham

and rats undergoing experimental TBI and found no

notable deficits in TBI rats (Vonder Haar et al., 2016).
However, in the same model of TBI, rats displayed

substantial deficits in simple discriminations (Martens

et al., 2012; Vonder Haar et al., 2014a, 2014b) and aberrant

(but not purely disadvantageous) choice behavior on the

RGT (Shaver TK, Ozga JE, Zhu B, Anderson KG,

Martens KM, Vonder Haar C, unpublished data), sug-

gesting that discrimination between concurrently avail-

able contingencies may be reduced, which may drive

executive function deficits in TBI patients. Given the

scope of this problem, augmented behavioral therapies

may need to be developed specific to patients with brain

injury in order to appropriately serve this population

(Knight et al., 2002; Wood and Alderman, 2011). These

foundational problems should also be considered when

assessing executive function in animal models of TBI.

Altered pharmacology after traumatic brain injury
While pharmacotherapies to treat TBI remain a primary

interest of the medical community, several concerns have

been raised about factors that may alter the efficacy of

these treatments. We have opted to focus primarily on

mechanisms of monoaminergic dysfunction because of

their suspected role in executive impairment; however, it

should be noted that effects of TBI extend far beyond

the monoamines. Notably, altered pharmacokinetics

have been observed by multiple mechanisms after TBI

and for many different drugs. In particular, hepatic

cytochrome-P450 enzymes are upregulated, and protein-

depot binding in blood may be reduced, resulting in

faster metabolism of many substances (Empey et al.,
2006; Anderson et al., 2015). Parsing these metabolic

changes is further compounded by disruption of the

blood–brain barrier (Stowe et al., 2000; Hay et al., 2015;
Prakash and Carmichael, 2015), potentially resulting in

higher than normal drug concentrations, and/or other

interfering proteins reaching neural tissue as blood–brain

barrier permeability shifts after injury. Together, these

factors present challenges to both the experimental

researcher and the clinician regarding concentration and

frequency of dosing, and may help explain the numerous

treatment failures experienced in the field of TBI.

While alterations to pharmacokinetics are concerning, fully

understanding the changes in pharmacodynamics after

TBI are an even more difficult challenge. Monoaminergic

metabolism, as well as receptor and transporter densities

are all altered at some point following TBI, leading to the

question of whether drugs exert the same effects in TBI as

non-TBI populations (McAllister et al., 2011a), or whether
TBI patients represent a unique subgroup with regard to

conventional pharmacotherapies. In addition, alterations in

monoaminergic signaling are varied during acute versus

chronic recovery, and thus, how pharmacotherapies affect

executive function at different time points is also important

for a full understanding of pharmacotherapy following TBI.
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Dopaminergic therapies
DA pharmacotherapies, such as amantadine hydro-

chloride, bromocriptine, D-amphetamine, and methyl-

phenidate (DA agonists), are reported to have cognitive-

enhancing (i.e. attention and working memory) effects in

TBI patients during chronic recovery (see Bales et al.,
2009; Liepert, 2016 for reviews). Therefore, these and

other pharmacotherapies (apiprazole, L-deprenyl, and

methamphetamine) aimed at increasing DA signaling

have been tested following experimental TBI. Several of

these drugs show promise in reducing chronic signaling

deficits following injury, such as increasing DA levels in

the striatum and substantia nigra while also reducing

neuronal death (Zhu et al., 2000; Wagner et al., 2008,
2009; Rau et al., 2012; Huang et al., 2014a, 2014b; Wang

et al., 2014; Tan et al., 2015; Phelps et al., 2017). In turn,

performance is improved acutely for TBI animals on

traditional tasks for assessing cognitive deficits, such as

the MWM and novel-object recognition tasks, following

administration of such therapeutic agents (Zhu et al.,
2000; Wagner et al., 2008, 2009; Rau et al., 2012; Huang

et al., 2014a, 2014b; Wang et al., 2014; Tan et al., 2015;
Leary et al., 2017; Phelps et al., 2017). At the same time,

pharmacotherapies that reduce DA signaling, such as

haloperidol and resperidone, exacerbate acute MWM

deficits, in both TBI and non-TBI animals (Wilson and

Hamm, 2002; Kline et al., 2007, 2008; Hoffman et al.,
2008), giving support for a significant contribution of

reduced DA signaling in cognitive dysfunction.

Most recently, work has focused on investigating how

DA therapies may affect higher-order executive function

using tasks such as those discussed earlier in this review.

Similar to memory-related assessments, drugs that

increase DA signaling (amantadine and D-amphetamine)

reduce chronic deficits in motor impulsivity in TBI ani-

mals on the 5CSRTT (Vonder Haar et al., 2016), although
effects of amantadine were accompanied by potential

psychomotor slowing or motivational issues across groups.

Perhaps most interesting was the fact that D-ampheta-

mine selectively reduced impulsivity, but only in

severely-injured rats; an effect that we have observed

again recently (Fig. 2). This provides strong evidence

that those with TBI may not respond to pharmacologic

treatments in the same manner as those without such

injury.

Indeed, human studies using functional MRI give evi-

dence for less activation in various brain regions for TBI

patients following acute dosing of bromocriptine when

compared with healthy control participants (McAllister

et al., 2011a). Thus, TBI patients may not respond in the

same way as non-TBI patients to pharmacotherapy, both

neurochemically or behaviorally. In addition, DA ago-

nistic therapies may not have the same effect on all types

of executive function, as evidenced by methylphenidate

aiding in chronic recovery of working memory function in

TBI patients (Liepert, 2016). These factors may become

even more confounding when considering that mixed in

with positive findings are studies claiming efficacy

without achieving statistical significance (Kim et al.,
2006), evidence for similar rates of recovery under pla-

cebo or nondrug conditions (Pavlovskaya et al., 2007), and
differential drug effects between TBI and non-TBI ani-

mals (Vonder Haar et al., 2016; Shaver TK, Ozga JE, Zhu

B, Anderson KG, Martens KM, Vonder Haar C, unpub-

lished data), ), null drug effects (Wilson and Hamm,

2002; Ripley et al., 2014), as well as the need to consider

natural aging- or sex-related changes in monoamine

metabolism and drug responsiveness. When combined

with studies that have identified altered DA pharmacol-

ogy in TBI patients, it is clear that additional research is

needed using animal models to determine whether cur-

rent DAergics may be effective in treating complex

cognitive dysfunction such as decision-making.

Noradrenergic therapies
Although NE signaling deficits have been observed

following TBI, evaluations of cognitive performance

following administration of pharmacotherapies targeting

the NE system are relatively sparse and conflicting. Some

have suggested that too much NE signaling is a cause for

concern in the acute recovery phase of TBI patients, with

α1 receptor antagonists (e.g. prazosin) improving MWM

performance in rats with experimental TBI at 14 days

postinjury (Kobori et al., 2011). However, others have

suggested that too little NE may be the issue. In clinical

assessments, guanfacine, an a2A receptor agonist,

improved working memory deficits following mild TBI at

one month postinjury (McAllister et al., 2011b), although
preclinical assessments have reported no effect of guan-

facine on MWM performance at 14 days postinjury

(Kobori et al., 2011). There is also mixed evidence

following administration of atomoxetine, a NE reuptake

inhibitor, in which clinical assessments suggest no effect

on attentional deficits at one year or more postinjury

(Ripley et al., 2014), while preclinical work suggests

improved working memory and response inhibition fol-

lowing atomoxetine treatment during both, acute and

chronic recovery of TBI animals (i.e. 14 days and

12 weeks; Reid and Hamm, 2008; Vonder Haar et al.,
2016). In addition to the sparse, and sometimes con-

flicting, evidence, atomoxetine has a low binding affinity

for the DA transporter (Bymaster et al., 2002); thus, its
effects on executive function may not be due to its action

on NE per se but rather by its effects on DA.

Serotonergic therapies
The majority of work with 5-HT agents has focused on

improving disruptions in mood, such as depression and

anxiety. However, executive function deficits are pre-

valent in patients with depressive disorders (Alves et al.,
2014), and 5-HT agents may simultaneously improve

executive function and mood (Gualtieri et al., 2006). Few
studies have investigated how 5-HT pharmacotherapies
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may impact cognitive function directly either following

clinical or experimental TBI. Similar to DA agonists,

various 5-HT agonists (N-n-propyl-3-ethoxyquinoxaline-

2-carboxamide, 8-OH-DPAT, repinotan, buspirone, and

fluoxetine) produce increases in basal 5-HT levels as well

as reduced neuronal cell loss and contusion volume fol-

lowing experimental TBI, corresponding with a reduc-

tion in acute and chronic anxiety-like (elevated plus

maze, marble burying, and open field) and depressive-

like (sucrose preference) behaviors (Kline et al., 2001,
2012; Cheng et al., 2007, 2008; Olsen et al., 2012; Monaco

et al., 2014; Bhatt et al., 2017).

In addition to emotion-related behaviors, a variety of

5-HT1A receptor agonists improve acute and chronic

MWM performance in TBI animals, suggesting that

deficits in 5-HT signaling post-TBI contribute to cogni-

tive deficits (Kline et al., 2001, 2012; Cheng et al., 2007,
2008; Olsen et al., 2012; Monaco et al., 2014; Bhatt et al.,
2017). However, others have reported no effect on acute

MWM performance in TBI animals following systemic

fluoxetine administration, an SSRI that is prescribed

commonly for depression and anxiety (Wilson and

Hamm, 2002). Given the limited evidence for how 5-HT-

enhancing drugs may affect cognitive function, in con-

junction with a lack of work using higher-order executive

function tasks, further work is needed to evaluate

how common 5-HT pharmacotherapies (SSRIs, in parti-

cular) affect working memory, decision-making, and

impulsivity.

Efficacy of pharmacotherapies
Reports showing mixed efficacy of pharmacotherapies in

TBI populations (both human and nonhuman animal) are

likely due to several factors, including timing of treat-

ment during recovery. As an example, NE antagonists

have shown promise in reducing hippocampally depen-

dent cognitive deficits, while agonists have been shown

to produce no improvements during acute recovery

(Kobori et al., 2011). In contrast, during chronic recovery,

NE agonists reduce cognitive function deficits

(McAllister et al., 2011b; Vonder Haar et al., 2016),

although the magnitude of effect is small. In addition to

the timing of drug administration, alterations in mono-

aminergic pharmacodynamics may lead to differences in

dosing guidelines needed to produce significant effects

on executive function for TBI populations. Indeed, some

have suggested that increased doses of DAergic therapies

are needed to affect executive function following TBI in

rats (Bondi et al., 2014; Vonder Haar et al., 2016; Leary
et al., 2017; Shaver TK, Ozga JE, Zhu B, Anderson KG,

Martens KM, Vonder Haar C, unpublished data), which

is reflective of altered pharmacokinetics or pharmacody-

namics following injury. Thus, the efficacy of traditional

pharmacotherapies for reducing executive function defi-

cits likely depends upon when during recovery and in

what doses drugs are administered. Together, changes in

pharmacodynamics and pharmacokinetics following TBI

pose challenges to clinicians and researchers, and may

explain the high frequency of treatment failures that exist

in the field.

Fig. 2

Differential effects of amphetamine challenge on motor impulsivity after traumatic brain injury (TBI). (a) High-dose amphetamine significantly reduced
impulsivity on the five-choice serial reaction time task, but only for animals with a severe focal TBI (P=0.002) (adapted with permission from Vonder
Haar et al., 2016, copyright 2016 American Chemical Society). (b); High-dose amphetamine significantly reduced impulsivity on the rodent gambling
task in animals with a severe focal TBI (P=0.011) (Ozga JE, O' Hearn CM, Shaver TK, Lake AD, Vonder Haar C, unpublished data). Adaptations are
themselves works protected by copyright. So in order to publish this adaptation, authorization must be obtained both from the owner of the copyright
in the original work and from the owner of copyright in the translation or adaptation.
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Deficits in executive function and monoaminergic sig-

naling may also help to explain the heightened pre-

valence of alcohol, cocaine, opioid, marijuana, and

amphetamine use disorders in TBI populations com-

pared with those without such injuries (Walker et al.,
2003; O’Phelan et al., 2008; Golub and Bennett, 2013;

Singh et al., 2014; Ma et al., 2015; Ramesh et al., 2015).
Given the large-scale alterations to monoaminergic sys-

tems following TBI, increased drug-seeking behaviors,

particularly of psychostimulants, may represent an effort

to ‘self-medicate’. While this simple pharmacological

argument is attractive, it is unlikely to account for the

entirety of substance abuse after TBI. In particular,

research has showed that impulsivity is intimately linked

to the development of substance abuse (Perry et al., 2005;
Dalley et al., 2007), and thus may be a mediating factor.

Further, deficits in behavioral flexibility are likely to

promote continued drug dependence, even in the face of

detrimental outcomes (Istin et al., 2017). Given that TBI

patients demonstrate deficits in all of these domains,

these are likely contributors to initiation, exacerbation,

and maintenance of substance abuse following injury.

However, data on increased incidence after TBI are a

classic case of correlation (i.e. does substance abuse cause

TBI or does TBI cause substance abuse?), with a lack of

concrete prospective studies in humans. Importantly, a

number of brain injuries occur while under the influence

of various substances, particularly alcohol, with some

studies ranging as high as 47% (Andelic et al., 2010).

Despite this figure, some studies report no relationship

between previous substance abuse and brain trauma

(Lange et al., 2014) while others identify relationships

only within injury subgroups (Andelic et al., 2010), and
indeed, alcohol intoxication at the time of injury is

associated with reduced injury severity in humans and

animals (Andelic et al., 2010; Goodman et al., 2013;

Kanbak et al., 2013; Raj et al., 2015).

The argument for TBI as causal to addiction is much

stronger when considering the animal evidence. To date,

few studies have examined voluntary drug self-

administration after TBI. However, these studies lar-

gely converge on the conclusion that animals with injury

self-administer more drug, or escalate their intake more

quickly, across both alcohol and cocaine (Lim et al., 2015;
Mayeux et al., 2015; Weil et al., 2016; Vonder Haar et al.,
2018), although such self-administration may depend

upon injury type, severity, and substance, as one group

found no changes in cocaine intake after blast injury

(Muelbl et al., 2018), while others have seen increased

alcohol intake after blast (Lim et al., 2015), and increased

cocaine after mild or severe focal injury (Vonder Haar

et al., 2018). Moreover, studies have found interesting

subgroup differences within TBI animals with regard to

acquisition of drug self-administration (Lim et al., 2015;
Vonder Haar et al., 2018), in which some TBI rats show

faster acquisition of drug self-administration than others,

suggesting potential biological or behavioral mediators of

resilience that warrant investigation. In particular, both

DA-related markers (e.g. DA-regulated and cAMP-

regulated neuronal phosphoprotein) and multiple

inflammatory markers (e.g. cytokines, glial activation)

have been affiliated with increased intake (Vonder Haar

et al., 2018) or greater sensitivity or preference for drugs

of abuse (Lowing et al., 2014; Merkel et al., 2017a, 2017b).
As research moves forward, a potential propensity to

substance abuse should be a prime consideration when

evaluating therapeutics, especially when considering

implementation in clinical populations.

Conclusion
In this review, we have identified major changes in

executive function following TBI, namely impulsivity,

behavioral flexibility, and working memory (Fig. 3).

These deficits are present in both human patients, and in

animal models of brain injury. While the clinical effects

are well-established, the animal literature lags behind.

Much of the focus of the experimental TBI field has

been on relatively simple assessments of learning and

memory, such as the MWM, to the neglect of more

complex cognitive function. Further studies are needed

to characterize executive function deficits across the

many existing injury models in order to generate a more

clinically-relevant behavioral phenotype which may then

be used to effectively screen treatment options.

Moreover, these deficits in executive function may be

driven by the major alterations in monoaminergic neu-

rotransmission such as dopamine, norepinephrine, and

serotonin (Fig. 3). However, the field is limited in its

consensus on the exact nature of these changes, and

there appear to be important factors related to injury type

and severity, as well as time from injury. More research is

needed at both the clinical and preclinical level to resolve

major conflicts (e.g. up-regulation and down-regulation of

DA receptors; increased NE despite cognitive impair-

ments that may be alleviated by NE agonists) so that we

may better understand the time course of these changes

and target therapeutics appropriately.

Finally, these changes in both executive function and

monoaminergic status may in turn complicate develop-

ing, administering, and achieving efficacious results not

only with novel compounds, but also with traditional

treatments for psychiatric-like symptoms experienced by

these individuals. In particular, reduced sensitivity to

contingencies surrounding the individual may limit the

efficacy of pharmacotherapies or require an integrated

approach with cognitive-behavioral therapies. In addi-

tion, altered doses, or less conventional drugs may be

required to treat behavioral symptoms, accounting for

monoaminergic alterations. Finally, the abuse potential

for drugs, particularly psychostimulants which may

remediate impulse control issues, needs to be carefully
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considered given links between substance abuse and

TBI populations.
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